Relations and Functions

Basic Definition of a relation:

A relation is a set of ordered pairs of real numbers. The domain of a relation is the set of all first coordinates in the relation and the range of a relation is the set of all second coordinates in the relation.

Basic definition of a function:

A function is a relation such that no two ordered pairs have the same first coordinates and different second coordinates.

Examples:

Determine the domain and the range of the following relations and then determine if each relation is a function:
$\{(1,3)(2,4)(3,5)(6,7)(8,9)\}$
$\{(1,3)(2,3)(3,3)(4,3)(5,3)\}$
$\{(1,3)(2,5)(0,1)(-1,8)(0,2)\}$

Examples:
Determine the domain and the range of the following relations and then determine if each relation is a function:

The Vertical Line Test

Examples of equations that are used as rules to define functions.
$y=2 x+3$

$$
y=x^{2}+2
$$

$A=\pi r^{2}$

Function Notation :

The equation $y=2 x+3$ written as $f(x)=2 x+3$

Example:
Let $f(x)=\frac{5 x^{2}+2}{x-1}$

What is $f(1)$?
What is $f(-2)$?

What is $f(a)$?
What is $f(x+2)$?

What is the domain of f ?

Example:
Let $h(x)=\sqrt{2 x+3}$

What is $h(1)$?

What is $h(a)$?
What is $h(-2)$?

What is $h(x-1)$?

What is the domain of h ?

The Difference Quotient: $\frac{f(x+h)-f(x)}{h}$

If $f(x)=3 x+2$ then find and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}=$

If $s(x)=x^{2}+2 x-1$ then find and simplify the difference quotient
$\frac{s(x+h)-s(x)}{h}=$

